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Previously proposed field equations for the field ~b which maps points in 
space-time to points on the two-sphere are derived from a suitable 
Lagrangian. The original conjecture that this theory may be the nonlinear 
theory of electrodynamics which has charge quantization as a topological 
property is supported by this result. Problems with this interpretation are 
indicated. 

1. INTRODUCTION 

In a previous paper (Pisello, 1977) we proposed a theory of a field which 
maps space-time into the two-sphere, subject to the boundary condition 

= ~b0 at spatial infinity, where if0 is a fixed point on the sphere, e.g., the 
north pole. This field admits homotopically invariant structures, first dis- 
covered by Hopf  (1931), which we call "kinks," a term introduced by 
Finkelstein and Rubenstein (1968). Here we describe the kink. The anti- 
symmetric tensor field F~j, derivable from a vector potential A~, is constructed 
from ff by using more compact notation. The class of gauge-dependent kink- 
current densities is then constructed from A~ and F~j by applying the theorem 
of Whitehead (1947). Equations of motion are derived from the Lagrangian 
L = �88 2 and it is proved that these equations imply the current J~ = OjF j~ is 
a kink current. In Section 7 we point out some of  the implications of the 
speculation made in the earlier paper that this theory may be the nonlinear 
modification of  Maxwell-Lorentz electrodynamics, which Einstein suggested 
might lead to a quantum theory of  radiation. 

2. THE KINK 

The two-sphere is mapped into a flat disk so that the south pole is 
identified with the center of the disk and the north pole is mapped into the 
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Fig. 1. The solid torus in physical space is mapped onto the surface of an abstract two- 
sphere. Each cross section of the torus is a disk which covers the sphere once. 

rim. (See Figure 1.) The disk is then moved around so that the surface gen- 
erated by the motion of  the rim is a torus. As the disk moves once around the 
torus, it turns through an angle of2~- rad about the normal through the center 
of  the disk in the direction of  motion. The disk leaves behind the image of 
the sphere which it carries and thus defines the mapping inside the torus. All 
points on and outside the torus are mapped into the north pole. Such a 
mapping represents a single kink in the field q~. I f  the disk is rotated through 
an angle of  -2~r, the mirror image or antikink results. A kink and anti- 
kink have opposite homotopic charge; they annihilate each other. 

3. THE TENSOR FIELD 

Let a and b be coordinates on the sphere and x = (x ~ x 1, x 2, x a) be 
coordinates in flat space-time. The field ~(x) can be represented locally by 
a pair of  continuous real-valued functions a(x), b(x). Let M(a,  b) define an 
area density on the sphere, so that the total area is unity. Introduce the 
symbols a~, b~ to represent the derivatives of a(x) and b(x) with respect to the 
coordinates x ~. The tensor field F~j, defined by 

F~i = M(a,  b)(a~bj - ajb~) (3.1) 

is independent of the choice of coordinates on the sphere and satisfies the 
relations 

~Fjz + OjFk, + 0kF, s = 0 (3.2) 

familiar from the theory of the electromagnetic field. Therefore F~j can be 
derived from a vector potential 

0~Aj - 0jA~ = F~j (3.3) 

where A, is determined up to the gradient of an arbitrary scalar gauge func- 
tion. We call (a, b) flux coordinates because the "magnetic" field lies in the 
surfaces of constant a or b. 
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4. THE KINK CURRENT 

Associated with each such A, is a conserved pseudovector current 
defined by 

K ' ( A )  = {E 'mAjFk,  (4.1) 

where E*J~ is antisymmetric in all indices and ~o~za = 1. According to 
Whitehead's theorem (1947), the integral of  the time component of such a 
current over a region of space counts the number of kinks minus antikinks 
contained in that region. Hence we call K~(A) the kink-current density 
associated with the vector potential A,. 

5. THE EQUATIONS OF M O T I O N  

Equations of motion for the field $ are derived from the Lagrangian 
density 

L = �88 ~j (5.1) 

by variation of  a(x)  and b(x).  (The raising and lowering of indices is accom- 
plished by contraction with the metric tensor g~j, where g~s = 0 for i # j, 
- g o o g l l  = g22 = gaa = -1 . )  If  we chose a and b so that M ( a ,  b) = l, then 

8L ~L ~ L  _ai(�89 ~at ) 
3a 8a ~ = F~j = -ai[�89 - b~Stj)] 

= - O,(F*Jbj) = - OiF*Jbj = - J J b j  = 0 

and similarly for 3L/Sb = O. The resulting equations, 

J~a, = 0 (5.2a) 

J'b~ = 0 (5.2b) 

where JJ = 8~F ~', are quasilinear second-order partial-differential equations 
for the functions a(x)  and b(x).  If  a~(x) and bt(x) are specified on a timelike 
hypersurface S~ such that 

EtJ~a~bjS~ ~ 0 (5.3) 

then equations (5.2) are independent linear equations for the second time 
derivatives of a and b. This condition insures the integrability of (5.2), and 
F~j may be regarded as determined over all space-time. In analogy to electro- 
magnetism, J~ is called the current for F~s. 

6. THE CURRENT J AS A KINK CURRENT 

Next we prove that J~ is a kink-current density. It suffices to show that 
there exists A~, a solution of (3.3), which satisfies 

J '  = eK~(A *) (6.1) 
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where e = +1, depending on the handedness of  the coordinate system. Let 
A* = At + 8~Q, where A~ is some known solution of  (3.3), and the gauge 
function Q(x) is the solution of the differential equation 

J 'At  + J '8 ,Q = J 'A*  = 0 (6.2) 

subject to the initial condition 

J'S~ = eKt(A*)S~ (6.3) 

on the timelike hypersurface St. I f  Kt(A *) does not vanish identically, then 
a~, b~, A*, and K~(A *) are linearly independent at each point in space-time. 
Equations (5.2) and (6.2) therefore imply 

J '  = q(x)K'(A*)  (6.4) 

where q(x) is a pseudoscalar function. Since both J~ and K ~ are conserved, q(x) 
must satisfy the differential equation 

K'a,q = 0 (6.5) 

while (6.3) specifies q(x) = e on S~. Integration of (6.5) yields q(x) = e every- 
where in space-time. Thus the desired result is obtained. Notice that J~ is a 
kink-current density which is a local function of the field ~. 

7. SUMMARY AND DISCUSSION 

We have presented a Lagrangian theory of the field ~ which maps 
elements of area in space-time into elements of area on the two-sphere, 
~ : dx  ~ dx  J --~ F~j dx  ~ dx  j. We have shown that there exists a vector potential 
A*, such that 

: l e ~ . J k l m A * F ~  F~j ~tA~' - ~jA* and atF tj = 2 k lm 

Thus Ftj obeys Maxwell's equations with electric charge quantized by virtue 
of its being identical to the homotopic charge of the theory. The interpretation 
of F~j as the electromagnetic field presents difficult problems connected with 
the physical interpretation of the nonlinear field. However, the implications 
of such an interpretation are far reaching. 

Equation (5.3) implies that the magnetic field may not vanish on St. 
Therefore a singly charged stationary solution will have an intrinsic magnetic 
moment. However, the Lagrangian is scale invariant, so that stationary solu- 
tions have no definite size. This indicates the need to complicate the theory 
by introducing a wider symmetry group. This question will be treated in a 
future publication. 

The interpretation of F~y as the electromagnetic field raises another 
immediate problem. The identity 

Fi~F~le tj~z = 0 
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implies that the "electric" and "magnetic" parts of F~ are everywhere and 
always mutually perpendicular. However, the usual ideas about the electro- 
magnetic field are derived from the operationally defined linear field and may 
not be applied to the nonlinear Fij, since there is no test charge distinct from 
the field itself in the unified theory. Full understanding of the connection 
between the nonlinear electromagnetic field and the experimental facts of 
electrodynamics must await the development of a theory of measurement of 
the unified field. Such a theory must be capable of representing both the 
measuring apparatus and the measured system in terms of the same funda- 
mental field. 

ACKNOWLEDGMENT 

I would like to thank David Finkelstein for helpful discussions. 

REFERENCES 

Finkelstein, D., and Rubenstein, J. (1968). Journal of MathematicalPhysics, 9, 1762. 
Hopf, H. (1931). Mathematische Annalen, 104, 637. 
Pisello, D. (1977). International Journal of Theoretical Physics, 16, 863. 
Whitehead, J. H. C. (1947). Proceedings of the National Academy of Sciences USA, 33, 

117. 


